题目内容
考点:翻折变换(折叠问题)
专题:
分析:先根据有一个角是直角的平行四边形是矩形判定四边形ABCD是矩形,得出∠A=90°,再由翻折变换的性质得出∠CBD=∠C′BD,根据平行线的性质得出∠ADB=∠CBD,进而得出BE=DE,然后设DE=x,则BE=x,AE=16-x,在Rt△ABE中利用勾股定理求出x的值即可.
解答:解:∵平行四边形ABCD中,∠C=90度,
∴平行四边形ABCD是矩形,
∴∠A=90°,AD∥BC.
∵Rt△DC′B由Rt△DBC翻折而成,
∴∠CBD=∠C′BD.
∵AD∥BC,
∴∠ADB=∠CBD,
∴∠ADB=∠C′BD,
∴BE=DE.
设DE=x,则BE=x,AE=16-x,
在Rt△ABE中,∠A=90°,
∴AB2+AE2=BE2,即82+(16-x)2=x2,
解得x=10,即DE=10.
故答案为10.
∴平行四边形ABCD是矩形,
∴∠A=90°,AD∥BC.
∵Rt△DC′B由Rt△DBC翻折而成,
∴∠CBD=∠C′BD.
∵AD∥BC,
∴∠ADB=∠CBD,
∴∠ADB=∠C′BD,
∴BE=DE.
设DE=x,则BE=x,AE=16-x,
在Rt△ABE中,∠A=90°,
∴AB2+AE2=BE2,即82+(16-x)2=x2,
解得x=10,即DE=10.
故答案为10.
点评:本题考查了矩形的判定与性质,翻折变换的性质及勾股定理,难度适中.解此类题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
练习册系列答案
相关题目
下列计算中,正确的是( )
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|
当a+b的值为3时,多项式2a+2b+1的值是( )
| A、5 | B、6 | C、7 | D、8 |