题目内容

如图:已知,P为∠AOB内一点,分别作出点P关于OA,OB的对称点P1,P2,连P1P2交OA于M,交OB于N,若P1P2=5cm,求△PMN的周长.

解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2
∴PM=P1M,PN=P2N,
∴△PMN的周长=PM+PN+MN=MN+P1M+P2N=P1P2=5cm.
分析:根据题意:借助轴对称的性质,得到PM=P1M,PN=P2N,进而可得PM+PN+MN=MN+P1M+P2N=P1P2,故△PMN的周长为5cm.
点评:本题考查轴对称的性质与运用,对称轴上的任何一点到两个对应点之间的距离相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网