搜索
题目内容
若实数x、y满足方程
,则x与y的关系是( )。
试题答案
相关练习册答案
互为相反数
练习册系列答案
书立方期末大考卷系列答案
中招试题详解暨中招复习指导系列答案
小学升学多轮夯基总复习系列答案
金钥匙期末冲刺100分系列答案
名师指导期末冲刺卷系列答案
初中英语听力训练苏州大学出版社系列答案
教与学中考必备系列答案
培优好卷系列答案
期末在线系列答案
全程评价与自测系列答案
相关题目
阅读下列范例,按要求解答问题.
例:已知实数a、b、c满足a+b+2c=1,a
2
+b
2
+6c+
3
2
=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)
2
-2ab+6c+
3
2
=0.②
将①代入②,整理得4c
2
+2c-2ab+
5
2
=0.∴ab=2c
2
+c+
5
4
③
由①、③可知,a、b是关于t的方程t
2
-(1-2c)t+2c
2
+c+
5
4
=0④的两个实数根.
∴△=(1-2c)
2
-4(2c
2
+c+
5
4
≥0,即(c+1)
2
≤0.而(c+1)
2
≥0,∴c+l=0,c=-1,
将c=-1代入④,得t
2
-3t+
9
4
=0.∴t
1
=t
2
=
3
2
,即a=b=
3
2
.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、设a=
1-2c
2
+t,b=
1-2c
2
-t.①
∵a
2
+b
2
+6c+
3
2
=0,∴(a+b)
2
-2ab+6c+
3
2
=0.②
将①代入②,得(1-2c)
2
-2
(
1-2c
2
+t)(
1-2c
2
-t)
+6c+
3
2
=0.
整理,得t
2
+(c
2
+2c+1)=0,即t
2
+(c+1)
2
=0.∴t=0,c=-1.
将t、c的值同时代入①,得a=
3
2
,b=
3
2
.a=b=
3
2
,c=-1.
以上解法1是构造一元二次方程解决问题.若两实数x、y满足x+y=m,xy=n,则x、y是关于t的一元二次方程t
2
-mt+n=0的两个实数根,然后利用判别式求解.
以上解法2是采用均值换元解决问题.若实数x、y满足x+y=m,则可设x=
m
2
+t,y=
m
2
-t.一些问题根据条件,若合理运用这种换元技巧,则能使问题顺利解决.
下面给出两个问题,解答其中任意一题:
(1)用另一种方法解答范例中的问题.
(2)选用范例中的一种方法解答下列问题:
已知实数a、b、c满足a+b+c=6,a
2
+b
2
+c
2
=12,求证:a=b=c.
(2013•柳州)有下列4个命题:
①方程x
2
-(
2
+
3
)x+
6
=0的根是
2
和
3
.
②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=
9
4
,则CD=3.
③点P(x,y)的坐标x,y满足x
2
+y
2
+2x-2y+2=0,若点P也在y=
k
x
的图象上,则k=-1.
④若实数b、c满足1+b+c>0,1-b+c<0,则关于x的方程x
2
+bx+c=0一定有两个不相等的实数根,且较大的实数根x
0
满足-1<x
0
<1.
上述4个命题中,真命题的序号是
①②③④
①②③④
.
有下列4个命题中,真命题的序号是( )
①平面上有5个点(没有任何三个点在同一直线上),可以确定10条直线.
②若直角三角形的两条边长恰为方程x
2
-7x+12=0的两根,那么它的面积一定是6.
③点P(x,y)的坐标x,y满足x
2
+y
2
+2x-2y+2=0,则点P在正比例函数y=-x的图象上.
④若实数b、c满足1+b+c>0,1-b+c<0,则关于x的方程x
2
+bx+c=0一定有一个实数根x
0
满足-1<x
0
<1.
A.①②③④
B.①③④
C.①③
D.①④
若实数a,b满足方程|a
2
-4|+
b+2
=0 则a+b的值为( )
A.0
B.4
C.4或-4
D.0或-4
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案