题目内容
| A、3 | B、4 | C、9 | D、3.6 |
分析:先连接AD,由于AB是直径,AC是切线,那么可知∠ADB=90°,∠CAB=90°,在Rt△ABC中利用勾股定理易求BC,而∠ABD=∠CBA,∠ADB=∠CAB,易证△ABD∽△CBA,利用比例线段可求BD,进而可求CD.
解答:
解:如右图所示,连接AD,
∵AB是直径,AC是切线,
∴∠ADB=90°,∠CAB=90°,
在Rt△ABC中,AC=6,AB=8,那么BC=
=10,
∵∠ABD=∠CBA,∠ADB=∠CAB,
∴△ABD∽△CBA,
∴AB:BD=BC:AB,
∴BD=
=
=
,
∴CD=BC-BD=10-
=
=3.6.
故选D.
∵AB是直径,AC是切线,
∴∠ADB=90°,∠CAB=90°,
在Rt△ABC中,AC=6,AB=8,那么BC=
| AC2+AB2 |
∵∠ABD=∠CBA,∠ADB=∠CAB,
∴△ABD∽△CBA,
∴AB:BD=BC:AB,
∴BD=
| AB2 |
| BC |
| 64 |
| 10 |
| 32 |
| 5 |
∴CD=BC-BD=10-
| 32 |
| 5 |
| 18 |
| 5 |
故选D.
点评:本题考查了勾股定理、圆周角定理、切线的性质、相似三角形的判定和性质.解题的关键是连接AD,构造直角三角形.
练习册系列答案
相关题目