题目内容
如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是_____.
如图,E是矩形ABCD内的一个动点,连接EA、EB、EC、ED,得到△EAB、△EBC、△ECD、△EDA,设它们的面积分别是m、n、p、q,给出如下结论:
①m+n=q+p;
②m+p=n+q;
③若m=n,则E点一定是AC与BD的交点;
④若m=n,则E点一定在BD上.
其中正确结论的序号是( )
A. ①③ B. ②④ C. ①②③ D. ②③④
若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=60°,则∠2=_____.
如果一个角的补角是150°,那么这个角的余角的度数是( )
A. 30° B. 60° C. 90° D. 120°
如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.
在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=相交于点A、B,且AC+BC=4,则△OAB的面积为( )
A. 2+3或2﹣3 B. +1或﹣1 C. 2﹣3 D. ﹣1
分式方程的解为( )
A. x=1 B. x=﹣1 C. 无解 D. x=﹣2
已知,则x-y=_____.
如图(1),已知菱形的边长为,点在轴负半轴上,点在坐标原点,点的坐标为(,),抛物线顶点在边上,并经过边的中点.
(1)求这条抛物线的函数解析式;
(2)点关于直线的对称点是,求点到点的最短距离;
(3)如图(2)将菱形以每秒个单位长度的速度沿轴正方向匀速平移,过点作于点,交抛物线于点,连接、.设菱形平移的时间为秒(),问是否存在这样的,使与相似?若存在,求出的值;若不存在,请说明理由.