题目内容

如图,二次函数y=ax2+bx+c的图象经过菱形ABCO的顶点A、C、O,其对称轴经过点B.
(1)求b与c的值;
(2)如果这个菱形的面积为数学公式,求这个二次函数的解析式.

解:(1)∵图象经过(0,0),
∴c=0,
∵B,C关于y轴对称,
∵x=-
∴AM=
AB=
∴BM=×=
∴C点的坐标为:();
∴代入y=ax2+bx得:
=a×+b×
解得:=b,
∴b=

(2)∵菱形的面积为
∴BM×AO=6
∵假设AB=AO=2a,AM=MO=a,
∴BM=a,
a×2a=6
解得:a=
∴A(-2,0),x=-,C(,3),
∴二次函数的解析式为:y=ax2+bx+c将点代入得:
解得:
∴二次函数的解析式为:y=x2+x.
分析:(1)根据图象可知图象经过(0,0),再利用菱形性质得出C点的坐标求出b的值即可;
(2)根据假设AB=AO=2a,AM=MO=a,得出A,C点的坐标,再利用待定系数法求出解析式即可.
点评:此题主要考查了菱形的性质以及待定系数法求二次函数解析式,利用数形结合得出C点的坐标是解决问题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网