题目内容

如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是(  )

   A.∠A=∠C  B.AD=CB    C.BE=DF    D.AD∥BC

考点:全等三角形的判定.

分析:求出AF=CE,再根据全等三角形的判定定理判断即可.

解答:解:∵AE=CF,

∴AE+EF=CF+EF,

∴AF=CE,

A.∵在△ADF和△CBE中

∴△ADF≌△CBE(ASA),正确,故本选项错误;

B.根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;

C.∵在△ADF和△CBE中

∴△ADF≌△CBE(SAS),正确,故本选项错误;

D.∵AD∥BC,

∴∠A=∠C,

∵在△ADF和△CBE中

∴△ADF≌△CBE(ASA),正确,故本选项错误;

故选B.

点评:本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS. 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网