题目内容
如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )
![]()
A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC
考点:全等三角形的判定.
分析:求出AF=CE,再根据全等三角形的判定定理判断即可.
解答:解:∵AE=CF,
∴AE+EF=CF+EF,
∴AF=CE,
A.∵在△ADF和△CBE中
![]()
∴△ADF≌△CBE(ASA),正确,故本选项错误;
B.根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;
C.∵在△ADF和△CBE中
![]()
∴△ADF≌△CBE(SAS),正确,故本选项错误;
D.∵AD∥BC,
∴∠A=∠C,
∵在△ADF和△CBE中
![]()
∴△ADF≌△CBE(ASA),正确,故本选项错误;
故选B.
点评:本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.
练习册系列答案
相关题目