题目内容
| 1 |
| 3 |
| A、1 | ||
| B、2 | ||
C、
| ||
D、2
|
分析:连接AO并延长,交圆O于点N,连接BN,则OM是△ABN的中位线,根据圆周角定理即可证明∠NAB=∠CBD,即可求得NB的长,根据三角形中位线定理即可求解.
解答:
解:连接AO并延长,交圆O于点N,连接BN.
∵AN是直径,
∴∠ABN=90°,
∴∠ABN=∠CDB,
又∵∠C=∠N,
∴∠NAB=∠CBD,
∴sin∠NAB=sin∠CBD=
,
∵OM⊥AB,OA=3,
∴OM=AO×sin∠NAB=1,
由勾股定理得AM=2
.
故选D.
∵AN是直径,
∴∠ABN=90°,
∴∠ABN=∠CDB,
又∵∠C=∠N,
∴∠NAB=∠CBD,
∴sin∠NAB=sin∠CBD=
| 1 |
| 3 |
∵OM⊥AB,OA=3,
∴OM=AO×sin∠NAB=1,
由勾股定理得AM=2
| 2 |
故选D.
点评:本题主要考查了三角形中位线定理,正确作出辅助线,利用等弧所对的圆周角相等把sin∠CBD=
进行转化是解题的关键.
| 1 |
| 3 |
练习册系列答案
相关题目