题目内容
(本题满分7分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,
(1)求证:△ACE≌△BCD;
(2)若DE=13,BD=12,求线段AB的长.
等腰三角形一腰上的高与另一腰所成的夹角为45°,则这个等腰三角形的一个底角的度数是( )
A.45° B.22.5°或67.5°
C.45°或135° D.45°或67.5°
(12分)如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作直线DE垂直BC于F,且交BA的延长线于点E.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若cos∠BAC=,⊙O的半径为6,求线段CD的长.
不等式组:的解集在数轴上表示正确的是( )
A.
B.
C.
D.
(本题满分9分)已知直角坐标系中菱形ABCD的位置如图所示,C.D两点的坐标分别为 (4,0)、(0,3).现有两动点P、Q分别从A、C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为ts.
(1)菱形ABCD的边长是 ,面积是 , 高BE的长是 .(直接填写结果)
(2)探究下列问题:
①若点P的速度为1cm/s,点Q的速度为2 cm/s.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;
②若点P的速度为1cm/s,点Q的速度变为kcm/s,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形,请探究当t=4s时的情形,并求出k的值.
已知点A(0,-4),B(8,0)和C(a,a),以线段AB的中点为圆心的圆过点C,则这个圆的半径的最小值等于 .
函数的自变量x的取值范围是 .
(本题满分8分)扬州市举办中学生足球赛,初中男子组共有市直学校的A、B两队和县区学校的e、f、g、h四队报名参赛,六支球队分成甲、乙两组,甲组由A、e、f三队组成,乙组由B、g、h三队组成,现要从甲、乙两组中各随机抽取一支球队进行首场比赛.
(1)在甲组中,首场比赛抽f 队的概率是 ;
(2)请你用画树状图或列表的方法,求首场比赛出场的两个队都是县区学校队的概率.
方程的根是 .