题目内容
已知∠α=20°,则∠α的补角等于 度.
阅读下面材料:小明研究了这样一个问题:求使得等式成立的x的个数.小明发现,先将该等式转化为,再通过研究函数的图象与函数的图象(如图)的交点,使问题得到解决.
(1)当k=1时,使得原等式成立的x的个数为_______;
(2)当0<k<1时,使得原等式成立的x的个数为_______;
(3)当k>1时,使得原等式成立的x的个数为_______.
参考小明思考问题的方法,解决问题:关于x的不等式只有一个整数解,求的取值范围.
有四张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④圆.将卡片背面朝上洗匀,从中随机抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是 .
(本小题满分8分)如图,抛物线的对称轴为直线,与轴交于A,B两点,与y轴交于点C(0,4).
(1)求抛物线的解析式,结合图象直接写出当0≤x≤4时y的取值范围;
(2)已知点D(m,m+1)在第一象限的抛物线上,点D关于直线BC的对称点为点E,求点E的坐标.
如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接
OH,则∠DHO= 度.
如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠ABC=70°,则∠BDC的度数为( )
A.40° B.30° C.20° D.10°
如图,已知抛物线C1与坐标轴的交点依次是A(-4,0),B(-2,0),E(0,8).
(1)求抛物线C1关于原点对称的抛物线C2的解析式;
(2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S.若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;
(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值;
(4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.
有五张形状、大小、质地都相同的卡片,上面分别画有下列图形:①线段②正三角形③平行四边形④菱形⑤圆,将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形又是中心对称图形的概率是( )
A. B. C. D.
学了统计知识后,小刚就本班同学上学“喜欢的出行方式”进行了一次调查.图(1)和图(2)是他根据采集的数据绘制的两幅不完整统计图.请根据图中提供的信息解答以下问题:
(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数;
(2)如果全年级共600名同学,请估算全年级步行上学的学生人数;
(3)若由3名“喜欢乘车”的学生,1名“喜欢步行”的学生,1名“喜欢骑车”的学生组队参加一项活动.欲从中选出2人担任组长(不分正副),列出所有可能的情况,并求出2人都“喜欢乘车”的学生的概率.