ÌâÄ¿ÄÚÈÝ
ÎÒÃÇÖªµÀ£¬¼Ù·ÖÊý¿ÉÒÔ»¯Îª´ø·ÖÊý£®ÀýÈ磺
=2+
=2
£®ÔÚ·ÖʽÖУ¬¶ÔÓÚÖ»º¬ÓÐÒ»¸ö×ÖĸµÄ·Öʽ£¬µ±·Ö×ӵĴÎÊý´óÓÚ»òµÈÓÚ·ÖĸµÄ´ÎÊýʱ£¬ÎÒÃdzÆÖ®Îª¡°¼Ù·Öʽ¡±£»µ±·Ö×ӵĴÎÊýСÓÚ·ÖĸµÄ´ÎÊýʱ£¬ÎÒÃdzÆÖ®Îª¡°Õæ·Öʽ¡±£®ÀýÈ磺
£¬
ÕâÑùµÄ·Öʽ¾ÍÊǼٷÖʽ£»
£¬
ÕâÑùµÄ·Öʽ¾ÍÊÇÕæ·Öʽ£®ÀàËÆµÄ£¬¼Ù·ÖʽҲ¿ÉÒÔ»¯Îª´ø·Öʽ£¨¼´£ºÕûʽÓëÕæ·ÖʽºÍµÄÐÎʽ£©£®
ÀýÈ磺
=
=1-
£»
=
=
=x+1+
£®
£¨1£©½«·Öʽ
»¯Îª´ø·Öʽ£»
£¨2£©Èô·Öʽ
µÄֵΪÕûÊý£¬ÇóxµÄÕûÊýÖµ£»
£¨3£©Çóº¯Êýy=
ͼÏóÉÏËùÓкá×Ý×ø±ê¾ùΪÕûÊýµÄµãµÄ×ø±ê£®
| 8 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| x-1 |
| x+1 |
| x2 |
| x-1 |
| 3 |
| x+1 |
| 2x |
| x2+1 |
ÀýÈ磺
| x-1 |
| x+1 |
| (x+1)-2 |
| x+1 |
| 2 |
| x+1 |
| x2 |
| x-1 |
| x2-1+1 |
| x-1 |
| (x+1)(x-1)+1 |
| x-1 |
| 1 |
| x-1 |
£¨1£©½«·Öʽ
| x-1 |
| x+2 |
£¨2£©Èô·Öʽ
| 2x-1 |
| x+1 |
£¨3£©Çóº¯Êýy=
| 2x2-1 |
| x+1 |
£¨1£©
=
=1-
£»
£¨2£©
=
=2-
£¬
¡ßµ±
ΪÕûÊýʱ£¬
ҲΪÕûÊý£¬
¡àx+1¿ÉÈ¡µÃµÄÕûÊýֵΪ¡À1¡¢¡À3£¬
¡àxµÄ¿ÉÄÜÕûÊýֵΪ0£¬-2£¬2£¬-4£»
£¨3£©y=
=
=2£¨x-1£©+
£¬
µ±x£¬y¾ùΪÕûÊýʱ£¬±ØÓÐx+1=¡À1£¬
½âµÃx=0»ò-2£¬
ÔòÏàÓ¦µÄyÖµ·Ö±ðΪ-1»ò-7£¬
¹ÊËùÇóµÄ×ø±êΪ£¨0£¬-1£©»ò£¨-2£¬-7£©£®
| x-1 |
| x+2 |
| (x+2)-3 |
| x+2 |
| 3 |
| x+2 |
£¨2£©
| 2x-1 |
| x+1 |
| 2(x+1)-3 |
| x+1 |
| 3 |
| x+1 |
¡ßµ±
| 2x-1 |
| x+1 |
| 3 |
| x+1 |
¡àx+1¿ÉÈ¡µÃµÄÕûÊýֵΪ¡À1¡¢¡À3£¬
¡àxµÄ¿ÉÄÜÕûÊýֵΪ0£¬-2£¬2£¬-4£»
£¨3£©y=
| 2x2-1 |
| x+1 |
| 2(x2-1)+1 |
| x+1 |
| 1 |
| x+1 |
µ±x£¬y¾ùΪÕûÊýʱ£¬±ØÓÐx+1=¡À1£¬
½âµÃx=0»ò-2£¬
ÔòÏàÓ¦µÄyÖµ·Ö±ðΪ-1»ò-7£¬
¹ÊËùÇóµÄ×ø±êΪ£¨0£¬-1£©»ò£¨-2£¬-7£©£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿