题目内容
汛期来临前,滨海区决定实施“海堤加固”工程,某工程队承包了该项目,计划每天加固60米.在施工前,得到气象部门的预报,近期有“台风”袭击滨海区,于是工程队改变计划,每天加固的海堤长度是原计划的1.5倍,这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为a米,则完成整个任务的实际时间比原计划时间少用了 天(用含a的代数式表示).
![]()
【解析】
试题分析:实际时间比原计划时间少用的时间=原计划用的时间-实际用的时间 .时间=工作总量
工作效率 实际的工作效率为1.5×60=90, 所以答案为![]()
考点:列代数式.
考点分析: 考点1:一元一次方程 定义:在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的整式方程叫一元一次方程。注:主要用于判断一个等式是不是一元一次方程。 一元一次方程标准形式:
只含有一个未知数(即“元”),并且未知数的最高次数为1(即“次”)的整式方程叫做一元一次方程。
一元一次方程的标准形式(即所有一元一次方程经整理都能得到的形式)是ax+b=0(a,b为常数,x为未知数,且a≠0)。其中a是未知数的系数,b是常数,x是未知数。未知数一般设为x,y,z。
分类:
1、总量等于各分量之和。将未知数放在等号左边,常数放在右边。如:x+2x+3x=6
2、等式两边都含未知数。如:302x+400=400x,40x+20=60x.
方程特点:
(1)该方程为整式方程。
(2)该方程有且只含有一个未知数。
(3)该方程中未知数的最高次数是1。 一元一次方程判断方法:
通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫 一元一次方程。
要判断一个方程是否为一元一次方程,先看它是否为整式方程。若是,再对它进行整理。如果能整理为 ax+b=0(a≠0)的形式,则这个方程就为一元一次方程。里面要有等号,且分母里不含未知数。
一元一次方程必须同时满足4个条件:
⑴它是等式;
⑵分母中不含有未知数;
⑶未知数最高次项为1;
⑷含未知数的项的系数不为0。
学习实践:
在小学会学习较浅的一元一次方程,到了初中开始深入的了解一元一次方程的解法和利用一元一次方程解较难的应用题。一元一次方程牵涉到许多的实际问题,例如工程问题、植树问题、比赛比分问题、行程问题、行船问题、相向问题分段收费问题、盈亏、利润问题。
列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式—— 方程。
⒈4x=24
⒉1700+150x=2450
⒊0.52x-(1-0.52)x=80
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法. 试题属性
- 题型:
- 难度:
- 考核:
- 年级:
练习册系列答案
相关题目
计算
(1)120+(-24)
(2)(-26.54)+(-6.4)+18.54+6.4
(3)-7+13-6+20;
(4)(-
+
-
)×48
(5)2×(-4)+3÷(-5)×![]()
(6)60×
-60×
+60×
.
(本题7分)某自行车厂一周计划生产2100辆电动车,平均每天生产电动车300辆,由于各种原因,实际每天生产量与计划每天生产量相比有出入。下表是某周的生产情况(超产记为正、减产记为负,单位:辆):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
减增 | +8 | -2 | -6 | +11 | -12 | +6 | +7 |
(1)根据记录的数据可知,该厂星期一生产电动车 辆
(2)产量最多的一天比产量最少的一天多生产电动车 辆
(3)该厂实行记件工资制,每生产一辆车可得60元,若超额完成任务,则超额部分每辆车另奖10元,每少生产一辆扣10元,那么该厂工人这一周的工资总额是多少元?
