题目内容
如图所示,已知在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°.在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长度为
- A.6
- B.3
- C.

- D.

C
分析:易得∠ABC=60°,∠A=30°.根据折叠的性质∠CBE=∠D=30°.在△BCE和△DCE中运用三角函数求解.
解答:∵∠ACB=90°,BC=3,AB=6,
∴sinA=BC:AB=1:2,
∴∠A=30°,∠CBA=60°.
根据折叠的性质知,∠CBE=∠EBA=
∠CBA=30°,
∴CE=BCtan30°=
,
∴DE=2CE=2
.
故选C.
点评:本题考查了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、直角三角形的性质,锐角三角函数的概念求解.
分析:易得∠ABC=60°,∠A=30°.根据折叠的性质∠CBE=∠D=30°.在△BCE和△DCE中运用三角函数求解.
解答:∵∠ACB=90°,BC=3,AB=6,
∴sinA=BC:AB=1:2,
∴∠A=30°,∠CBA=60°.
根据折叠的性质知,∠CBE=∠EBA=
∴CE=BCtan30°=
∴DE=2CE=2
故选C.
点评:本题考查了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、直角三角形的性质,锐角三角函数的概念求解.
练习册系列答案
相关题目
在方格纸中,每个小格的顶点称为格点,以格点连线为边的三角形叫做格点三角形,在如图所示5×5 的方格纸中,作格点△ABC和△OAB相似(相似比不能为1),已知A(1,0),则C点坐标是 ![]()
| A.(4,4) | B.(2,5)或(5,2) |
| C.(5,2) | D.(4,4)或(5,2) |