题目内容
如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED。试说明AE平分∠BAD。
如图,给正五边形的顶点依次编号为1、2、3、4、5,若从某一顶点开始,沿五边形的边顺时针行走,顶点编号是几,就走几个边长,则称这种走法为一次“移位”. 如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→l为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”,则他所处顶点的编号为 .
某中学库存若干套桌椅,准备修理后支援贫困山区学校。现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费。
(1)该中学库存多少套桌椅?
(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:a、由甲单独修理;b、由乙单独修理;c、甲、乙合作同时修理。你认为哪种方案省时又省钱?为什么?
用一根72cm的铁丝可围成一个长方形,则这个长方形的最大面积是( )
A. 81 B. 18 C. 324 D. 326
下列方程中,解是=1的是( )
A. B. C. D.
如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为____
一只小狗在如图所示的方砖上走来走去,求最终停在阴影方砖上的概率是 .
如图,在平面直角坐标系中,O 为原点,直线 AB 分别与 x 轴、y 轴交于 B 和 A,与反比例函 数的图象交于 C、D,CE⊥x 轴于点 E,tan∠ABO=,OB=4,OE=2.
(1)求直线 AB 和反比例函数的解析式;
(2)求△OCD 的面积.
如果若分式的值为0,则实数a的值为 .