ÌâÄ¿ÄÚÈÝ
7£®£¨1£©ÔĶÁÀí½â£ºÔÚ½âÒ»Ôª¶þ´Î·½³Ì2x2-6x+4=0ʱ£¬¿ÉÒÔÏȰÑ×ó±ßµÄ¶þ´ÎÈýÏîʽ·Ö½âÒòʽ£¬µÃ2£¨x2-3x+2£©=0£¬¼´2£¨x-1£©£¨x-2£©=0£¬ÕâÑù¾Í¿ÉÒԵõ½·½³ÌµÄÁ½¸ö¸ù£ºx1=1£¬x2=2£®·´¹ýÀ´£¬ÎÒÃÇÒ²¿ÉÒÔÀûÓÃÇóÒ»Ôª¶þ´Î·½³ÌÁ½¸ùµÄ·½·¨£¬°Ñ¶þ´ÎÈýÏîʽ·Ö½âÒòʽ£®¶ÔÓÚ¶þ´ÎÈýÏîʽ2x2-6x+4=0·Ö½âÒòʽ£®ÊÂʵÉÏÎÒÃÇ¿ÉÁî¶þ´ÎÈýÏîʽ2x2-6x+4=0Ϊ0£¬µÃÒ»Ôª¶þ´Î·½³Ì2x2-6x+4=0£¬Ôٽⷽ³Ì¿ÉµÃx1=1£¬x2=2£®´Ó¶ø¿ÉµÃ2x2-6x+4=2£¨x-1£©£¨x-2£©£®
£¨2£©ÖªÊ¶Ç¨ÒÆ£ºÊÔÔÚʵÊý·¶Î§ÄÚ·Ö½âÒòʽ£º3x2-4x-1£®
·ÖÎö ÁîÔʽµÈÓÚ0£¬Çó³öxµÄÖµ£¬¼´¿ÉÈ·¶¨³ö·Ö½â½á¹û£®
½â´ð ½â£ºÓÉ·½³Ì3x2-4x-1=0£¬¿É½âµÃ£ºx=$\frac{2¡À\sqrt{7}}{3}$£¬
Ôò3x2-4x-1=3£¨x-$\frac{2+\sqrt{7}}{3}$£©£¨x-$\frac{2-\sqrt{7}}{3}$£©£®
µãÆÀ ´ËÌ⿼²éÁËʵÊý·¶Î§ÄÚ·Ö½âÒòʽ£¬ÒÔ¼°½âÒ»Ôª¶þ´Î·½³Ì-Òòʽ·Ö½â·¨£¬ÊìÁ·ÕÆÎÕÔËËã·¨ÔòÊǽⱾÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
18£®ÒÑÖªÏß¶Îa=4£¬b=9£¬Ïß¶ÎxÊÇa£¬bµÄ±ÈÀýÖÐÏÔòxµÈÓÚ£¨¡¡¡¡£©
| A£® | 6 | B£® | 6»ò-6 | C£® | -6 | D£® | 36 |
12£®ÒÑÖªµÈÑüÈý½ÇÐεױ߳¤ºÍÑü³¤ÊÇ·½³Ìx2-9x+18=0µÄÁ½¸ù£¬ÔòÕâ¸öµÈÑüÈý½ÇÐεÄÖܳ¤Îª£¨¡¡¡¡£©
| A£® | 15 | B£® | 12 | C£® | 15»ò12 | D£® | 18 |
16£®Ä³Ò»¶¯Îïϸ°û£¬Ï¸°ûºËÓëϸ°û±ÚÖ®¼äµÄ¾àÀëΪ0.0000075cm£¬ÓÿÆÑ§¼ÇÊý·¨±íʾΪ£¨¡¡¡¡£©
| A£® | 7.5¡Á106cm | B£® | 7.5¡Á10-6cm | C£® | 7.5¡Á10-5cm | D£® | -7.5¡Á106cm |