题目内容

(2012•泰安)如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是(  )
分析:连接DE并延长交AB于H,由已知条件可判定△DCE≌△HAE,利用全等三角形的性质可得DE=HE,进而得到EF是三角形DHB的中位线,利用中位线性质定理即可求出EF的长.
解答:解:连接DE并延长交AB于H,
∵CD∥AB,
∴∠C=∠A,∠CDE=∠AHE,
∵E是AC中点,
∴AE=CE,
∴△DCE≌△HAE(AAS),
∴DE=HE,DC=AH,
∵F是BD中点,
∴EF是△DHB的中位线,
∴EF=
1
2
BH,
∴BH=AB-AH=AB-DC=2,
∴EF=1.
故选D.
点评:本题考查了全等三角形的判定和性质、三角形的中位线的判定和性质,解题的关键是连接DE和AB相交构造全等三角形,题目设计新颖.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网