题目内容
已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为 .
【答案】分析:首先把x=1代入一元二次方程x2+mx+n=0中得到m+n+1=0,然后把m2+2mn+n2利用完全平方公式分解因式即可求出结果.
解答:解:∵x=1是一元二次方程x2+mx+n=0的一个根,
∴m+n+1=0,
∴m+n=-1,
∴m2+2mn+n2=(m+n)2=(-1)2=1.
点评:此题主要考查了方程的解的定义,利用方程的解和完全平方公式即可解决问题.
解答:解:∵x=1是一元二次方程x2+mx+n=0的一个根,
∴m+n+1=0,
∴m+n=-1,
∴m2+2mn+n2=(m+n)2=(-1)2=1.
点评:此题主要考查了方程的解的定义,利用方程的解和完全平方公式即可解决问题.
练习册系列答案
相关题目
已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2,
+
=1,则k的值是( )
| 1 |
| x1 |
| 1 |
| x2 |
| A、8 | B、-7 | C、6 | D、5 |