题目内容
根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是( )| x | 3.23 | 3.24 | 3.25 | 3.26 |
| ax2+bx+c | -0.06 | -0.02 | 0.03 | 0.09 |
A.3<x<3.23
B.3.23<x<3.24
C.3.24<x<3.25
D.3.25<x<3.26
【答案】分析:根据函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,再根据函数的增减性即可判断方程ax2+bx+c=0一个解的范围.
解答:解:函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,
函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0;
由表中数据可知:y=0在y=-0.02与y=0.03之间,
∴对应的x的值在3.24与3.25之间即3.24<x<3.25.
故选C.
点评:掌握函数y=ax2+bx+c的图象与x轴的交点与方程ax2+bx+c=0的根的关系是解决此题的关键所在.
解答:解:函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,
函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0;
由表中数据可知:y=0在y=-0.02与y=0.03之间,
∴对应的x的值在3.24与3.25之间即3.24<x<3.25.
故选C.
点评:掌握函数y=ax2+bx+c的图象与x轴的交点与方程ax2+bx+c=0的根的关系是解决此题的关键所在.
练习册系列答案
相关题目
13、根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是( )
|