题目内容

精英家教网如图,Rt△ABC中,CD为斜边AB上的高,DE⊥CB于E,若BE=6,CE=4,则AD=
 
分析:可由Rt△BDE∽Rt△BCD,得出BD的长,进而再由平行线分线段成比例即可求解AD的长.
解答:解:∵CD⊥AB,DE⊥BC,∴DE∥AC,
∴Rt△BDE∽Rt△BCD,∴
BD
BC
=
BE
BD

即BD2=BE•BC=6×(6+4)=60,
∴BD=2
15

∵DE∥AC,∴
BD
AD
=
BE
EC
=
6
4

解得AD=
4
3
15

故答案为
4
15
3
点评:本题主要考查了相似三角形的判定及性质以及平行线分线段成比例的性质,能够熟练运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网