题目内容
如图,?ABCO中,OA=2,AB=6,将?ABCO绕点A逆时针旋转得?ADEF,AD经过原点O,点F落在x轴上,若双曲线y=经过点D,则k的值为____.
小明准备在院子里修一个矩形花圃,花圃的一边利用墙另三边用总长为16米的篱笆恰好围成,已知墙的最大可利用长度为5米,则围成的矩形花圃的最大面积为_____平方米.
有一道题,求3a2-4a2b+3ab+4a2b-ab+a2-2ab的值,其中a=-1,b=,小明同学把b=错写成了b=-,但他的计算结果也是正确的,请你通过计算说明这是怎么回事?
如果代数式-2a+3b+5的值为12,那么代数式9b-6a+2的值等于( )
A.23 B.-23 C.19 D.-19
如图,平面直角坐标系中,菱形ABCD的边AB在x轴上,已知点A(2,0),点C(10,4),双曲线经过点D.
(1)求菱形ABCD的边长;
(2)求双曲线的解析式.
如图所示,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为4,则这个反比例函数的解析式为_____.
边长为的正方形的对称中心是坐标原点,轴,轴,反比例函数与的图象均与正方形的边相交,则图中的阴影部分的面积是( )
A. 2 B. 4 C. 8 D. 6
如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.
某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?
(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.