题目内容
(2012•安庆二模)观察下列一组等式:
=1-
,
=
-
,
=
-
,….
解答下列问题:
(1)对于任意的正整数n:
=
-
-
.
【证】
(2)计算:
+
+
+…+
=
.
【解】
(3)已知m为正整数化简:
+
+
+…+
=
.
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
解答下列问题:
(1)对于任意的正整数n:
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
【证】
(2)计算:
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2011×2012 |
| 2011 |
| 2012 |
| 2011 |
| 2012 |
【解】
(3)已知m为正整数化简:
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| (2m-1)(2m+1) |
| m |
| 2m+1 |
| m |
| 2m+1 |
分析:(1)观察可得规律:
=
-
,然后利用分式的加减运算法则求解,即可求得答案;
(2)由(1)可将原式化为:1-
+
-
+
+…+
-
,继而求得答案;
(3)由(1)可将原式化为:
×(1-
+
-
+
-
+…+
-
),继而求得答案.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
(2)由(1)可将原式化为:1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2011 |
| 1 |
| 2012 |
(3)由(1)可将原式化为:
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2m-1 |
| 1 |
| 2m+1 |
解答:解:(1)
=
-
.
证明:
-
=
=
;
(2)
+
+
+…+
=1-
+
-
+
+…+
-
=1-
=
;
(3)
+
+
+…+
=
×(1-
+
-
+
-
+…+
-
)=
×(1-
)=
.
故答案为:(1)
-
,(2)
,(3)
.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
证明:
| 1 |
| n |
| 1 |
| n+1 |
| n+1-n |
| n(n+1) |
| 1 |
| n(n+1) |
(2)
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2011×2012 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2011 |
| 1 |
| 2012 |
| 1 |
| 2012 |
| 2011 |
| 2012 |
(3)
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| (2m-1)(2m+1) |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2m-1 |
| 1 |
| 2m+1 |
| 1 |
| 2 |
| 1 |
| 2m+1 |
| m |
| 2m+1 |
故答案为:(1)
| 1 |
| n |
| 1 |
| n+1 |
| 2011 |
| 2012 |
| m |
| 2m+1 |
点评:此题考查了分式的加减运算法则.此题属于规律性题目,难度适中,注意掌握规律
=
-
是解此题的关键.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
练习册系列答案
相关题目