题目内容
已知
=3,求(
-
)÷(
+x)的值.
| x2 |
| x2-2 |
| 1 |
| 1-x |
| 1 |
| 1+x |
| x |
| x2-1 |
分析:先把代数式进行因式分解,再把分子、分母进行通分,然后把除法转化成乘法,化到最简,最后把
=3进行整理,求出x的值,再代入原式即可求出答案.
| x2 |
| x2-2 |
解答:解:(
-
)÷(
+x)
=(
-
)÷(
+
)
=
÷(
+
)=
×
=
,
∵
=3,
∴2x2-6=0,
∴2(x2-3)=0,
∴x=±
,
把x=±
代入上式得,原式=
.
| 1 |
| 1-x |
| 1 |
| 1+x |
| x |
| x2-1 |
=(
| 1 |
| 1-x |
| 1 |
| 1+x |
| x |
| (x+1)(x-1) |
| x(x+1)(x-1) |
| (x+1)(x-1) |
=
| 2x |
| (1-x)(1+x) |
| x |
| (x+1)(x-1) |
| x(x+1)(x-1) |
| (x+1)(x-1) |
| 2x |
| (1-x)(1+x) |
| (x+1)(x-1) |
| x3 |
| 2 |
| x2 |
∵
| x2 |
| x2-2 |
∴2x2-6=0,
∴2(x2-3)=0,
∴x=±
| 3 |
把x=±
| 3 |
| 2 |
| 3 |
点评:此题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.
练习册系列答案
相关题目