题目内容
分析:首先连接OC,OA,由大圆的弦AB切小圆于点C,可得OC⊥AB,由垂径定理即可求得AC=
AB=2,由勾股定理可求得在Rt△OAC中,OA2-OC2=AC2=4,继而可得:圆环的面积为:πOA2-πOC2=π(OA2-OC2)=4π.
| 1 |
| 2 |
解答:
解:连接OC,OA,
∵大圆的弦AB切小圆于点C,
∴OC⊥AB,
∴AC=BC=
AB=
×4=2,
∵在Rt△OAC中,OA2-OC2=AC2=4,
∴圆环的面积为:πOA2-πOC2=π(OA2-OC2)=4π.
∵大圆的弦AB切小圆于点C,
∴OC⊥AB,
∴AC=BC=
| 1 |
| 2 |
| 1 |
| 2 |
∵在Rt△OAC中,OA2-OC2=AC2=4,
∴圆环的面积为:πOA2-πOC2=π(OA2-OC2)=4π.
点评:此题考查了切线的性质、垂径定理以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关题目