题目内容
整式的计算
(1)-3a2+2ab-4ab+2a2
(2)5(3a2b-ab2)-3(ab2+5a2b)
(3)
-
(4)己知a-b=4,求代数式
(a-b)2-9(a-b)-
(a-b)2-5(b-a)的值.
(5)已知(a+2)2+|b-
|=0,求5a2b-[2a2b-(ab2-2a2b)-4-2ab2]的值.
(1)-3a2+2ab-4ab+2a2
(2)5(3a2b-ab2)-3(ab2+5a2b)
(3)
| 1-2x |
| 3 |
| 3-x |
| 4 |
(4)己知a-b=4,求代数式
| 1 |
| 4 |
| 1 |
| 2 |
(5)已知(a+2)2+|b-
| 1 |
| 4 |
分析:(1)把各同类项进行合并即可;
(2)先去括号,再合并同类项即可;
(3)先通分,再合并同类项即可;
(4)先把所求代数式进行化简,再把a-b=4代入进行计算;
(5)先根据非负数的性质求出a、b的值,再把原式进行化简,把a、b的值代入进行计算即可.
(2)先去括号,再合并同类项即可;
(3)先通分,再合并同类项即可;
(4)先把所求代数式进行化简,再把a-b=4代入进行计算;
(5)先根据非负数的性质求出a、b的值,再把原式进行化简,把a、b的值代入进行计算即可.
解答:解:(1)原式=(-3+2)a2+(2-4)ab
=-a2-2ab;
(2)原式=15a2b-5ab2-3ab2-15a2b
=(-5-3)ab2
=-8ab2;
(3)原式=
-
=
-
=
=
;
(4)原式=-
(a-b)2-4(a-b),
当a-b=4时,原式=(-
)×42-4×4
=-20;
(5)∵(a+2)2+|b-
|=0,
∴a+2=0,b-
=0,
解得a=-2,b=
,
原式=5a2b-[2a2b-ab2+2a2b-4-2ab2]
=5a2b-2a2b+ab2-2a2b+4+2ab2
=(5-2-2)a2b+(1+2)ab2+4
=a2b+3ab2+4,
当a=-2,b=
时,
原式=(-2)2×
+3×(-2)×(
)2+4
=1-
+4
=
.
=-a2-2ab;
(2)原式=15a2b-5ab2-3ab2-15a2b
=(-5-3)ab2
=-8ab2;
(3)原式=
| 4(1-2x) |
| 12 |
| 3(3-x) |
| 12 |
=
| 4-8x |
| 12 |
| 9-3x |
| 12 |
=
| 4-8x-9+3x |
| 12 |
=
| -5-5x |
| 12 |
(4)原式=-
| 1 |
| 4 |
当a-b=4时,原式=(-
| 1 |
| 4 |
=-20;
(5)∵(a+2)2+|b-
| 1 |
| 4 |
∴a+2=0,b-
| 1 |
| 4 |
解得a=-2,b=
| 1 |
| 4 |
原式=5a2b-[2a2b-ab2+2a2b-4-2ab2]
=5a2b-2a2b+ab2-2a2b+4+2ab2
=(5-2-2)a2b+(1+2)ab2+4
=a2b+3ab2+4,
当a=-2,b=
| 1 |
| 4 |
原式=(-2)2×
| 1 |
| 4 |
| 1 |
| 4 |
=1-
| 3 |
| 8 |
=
| 37 |
| 8 |
点评:本题考查的是整式的化简求值、整式的加减及非负数的性质,熟知整式的加减法则是解答此题的关键.
练习册系列答案
相关题目