题目内容

如图,O是直线AB上的一点,OD是∠BOC的平分线,OE是∠AOC平分线,则下列说法中错误的是


  1. A.
    ∠COE与∠BOE互补
  2. B.
    ∠EOC与∠BOD互余
  3. C.
    ∠COD与∠AOD互补
  4. D.
    ∠COD与∠BOD互余
D
分析:根据角平分线的性质,可得∠AOE=∠COE,∠COD=∠BOD,再根据余角和补角的定义求解即可.
解答:∵OD是∠BOC的平分线,OE是∠AOC平分线,
∴∠AOE=∠COE=∠AOC,∠COD=∠BOD=∠BOC,
∵∠AOC+∠COB=180°,
∴∠COE+∠COD=90°,
A、∠COE与∠BOE互补,正确;
B、∠EOC与∠BOD互余,正确;
C、∠COD与∠AOD互补,正确
D、∠COD与∠BOD互余,错误;
故选D.
点评:本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义,掌握角平分线的性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网