题目内容

如图,在⊙O中,AB,AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证:四边形ADOE是正方形.
考点:垂径定理,正方形的判定
专题:证明题
分析:先根据垂径定理,由OD⊥AB,OE⊥AC得到AD=
1
2
AB,AE=
1
2
AC,且∠ADO=∠AEO=90°,加上∠DAE=90°,则可判断四边形ADOE是矩形,由于AB=AC,所以AD=AE,于是可判断四边形ADOE是正方形.
解答:证明:∵OD⊥AB于D,OE⊥AC于E,
∵AD=
1
2
AB,AE=
1
2
AC,∠ADO=∠AEO=90°,
∵AB⊥AC,
∴∠DAE=90°,
∴四边形ADOE是矩形,
∵AB=AC,
∴AD=AE,
∴四边形ADOE是正方形.
点评:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了正方形的判定.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网