题目内容

如图,已知E是正方形ABCD的边CD上一点,BF⊥AE于F,求证:AB2=AE•BF.

证明:∵∠ABF+∠DAE=90°,∠DAE+∠BAF=90°,
∴△ABF∽△AED,
=
∴AD2=AE•BF,
∵AB=AD,
∴AB2=AE•BF.
分析:根据正方形内角为90°的性质可以求证△ABF∽△EAD,即可求得AD2=AE•BF,AB=AD即可解题.
点评:本题考查了相似三角形的证明,相似三角形对应边比值相等的性质,正方形各内角为90°、各边长相等的性质,本题中求证△ABF∽△AED是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网