题目内容
2的倒数是( )
A.2 B.-2 C. D.-
在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是 .
已知抛物线C1:y=ax2+bx+(a≠0)经过点A(-1,0)和B(3,0).
(1)求抛物线C1的解析式,并写出其顶点C的坐标;
(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C分别平移到点D,E处.设点F在抛物线C1上且在x轴的下方,若△DEF是以EF为底的等腰直角三角形,求点F的坐标;
(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:
①tan∠ENM的值如何变化?请说明理由;
②点M到达点C时,直接写出点P经过的路线长.
如图,A,B,C,D为⊙O的四等分点,动点P从圆心O出发,沿O-C-D-O路线作匀速运动,设运动时间为t(s).∠APB=y(°),则下列图象中表示y与t之间函数关系最恰当的是( )
下列计算正确的是( )
A.-x3+3x3=2x3 B.x+x=x2 C.x3+2x5=3x3 D.x5-x4=x
如图,在平的直角坐标系中,直线y=-2x+2与x轴y轴分别相交于点A,B,四边形ABCD是正方形,曲线y=在第一象限经过点D.
(1)求双曲线表示的函数解析式;
(2)将正方形ABCD沿X轴向左平移 个单位长度时,点C的对应点恰好落在(1)中的双曲线上.
计算:= .
我区积极开展“体育大课间”活动,引导学生坚持体育锻炼,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步.D:足球四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调査,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:
(1)求样本中最喜欢B项目的人数百分比和其所在扇形图中的圆心角的度数;
(2)请把条形统计图补充完整;
(3)己知该校有2000人,请根据样本估计全校最喜欢足球的人数是多少?
13世纪数学家斐波那契的(计算书)中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( )
A.42 B.49 C.76 D.77