题目内容

如图所示,G为△ABC重心(即AD,BE,CF分别为各边的中线),若已知S△EFG=1,则S△ABC


  1. A.
    2
  2. B.
    4
  3. C.
    8
  4. D.
    12
D
分析:先根据EF∥BC1求出△EFG∽△BCG,再根据相似三角形的性质求出S△BCG的值,再根据三角形重心的性质即可解答.
解答:∵AD,BE,CF分别为各边的中线,
∴EF∥BC,△EFG∽△BCG,EF=BC,
∴S△BCG=4S△EFG=4,
又∵G为△ABC重心,∴AG=2GD,
∴S△ABG+S△ACG=2S△BCG=8,
∴S△ABC=12.
故选D.
点评:此题要熟悉三角形的重心的性质.掌握比较两个三角形的面积的两种方法:利用相似或利用面积公式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网