题目内容
| 1 |
| 5 |
A、
| ||
| B、2 | ||
| C、1 | ||
D、2
|
分析:作DE⊥AB,构造直角三角形,根据角的正弦值与三角形边的关系,可求出各边的长.
解答:
解:作DE⊥AB于E点.
∵tan∠DBA=
=
,
∴BE=5DE,
∵△ABC为等腰直角三角形,
∴∠A=45°,
∴AE=DE.
∴BE=5AE,
又∵AC=6,
∴AB=6
.
∴AE+BE=5AE+AE=6
,
∴AE=
,
∴在等腰直角△ADE中,由勾股定理,得AD=
AE=2.
故选B.
∵tan∠DBA=
| 1 |
| 5 |
| DE |
| BE |
∴BE=5DE,
∵△ABC为等腰直角三角形,
∴∠A=45°,
∴AE=DE.
∴BE=5AE,
又∵AC=6,
∴AB=6
| 2 |
∴AE+BE=5AE+AE=6
| 2 |
∴AE=
| 2 |
∴在等腰直角△ADE中,由勾股定理,得AD=
| 2 |
故选B.
点评:此题的关键是作辅助线,构造直角三角形,运用三角函数的定义建立关系式然后求解.
练习册系列答案
相关题目
教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:

(1)sad
的值为( ▼ )
(2)对于
,∠A的正对值sad A的取值范围是 ▼ .
(3)已知
,其中
为锐角,试求sad
的值.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=
根据上述对角的正对定义,解下列问题:
(1)sad
| A. | B.1 | C. | D.2 |
(3)已知
教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:![]()
(1)sad
的值为( ▼ )
| A. | B.1 | C. | D.2 |
(3)已知