题目内容
如图,在平面直角坐标系中,点0为坐标原点,A点的坐标为(3,0),以0A为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从0点出发沿0C向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。设运动时间为t秒.
(1)求线段BC的长;
(2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F。设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围:
(3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE1F1,使点E的对应点E1落在线段AB上,点F的对应点是F1,E1F1交x轴于点G,连接PF、QG,当t为何值时,2BQ-PF=
QG?
![]()
考点:等边三角形判定与性质、相似三角形判定与性质、直角三角形的判定、三角形内角和、等腰三角形判定,一元一次方程
分析:(1)由△AOB为等边三角形得∠ACB=∠OBC=300,
由此CO=OB=AB=OA=3,在RT△ABC中,AC为6 ,从而BC=
(2)过点Q作QN∥0B交x轴于点N,先证△AQN为等边三角形,从而NQ=NA=AQ=3-t,NON=3- (3-t)=t
PN=t+t=2t,再由△POE∽△PNQ后 对应边成比例计算得
再由EF=BE易得出m与t之间的函数关系式
(3)先证△AE’G为等边三角形,再证∠QGA=900
通过两边成比例夹角相等得△FCP∽△BCA 再用含t的式子表示BQ、、PF、QG通过解方程求出
解答:(1)解:如图l∵△AOB为等边三角形 ∴∠BAC=∠AOB=60。
∵BC⊥AB ∴∠ABC=900 ∴∠ACB=300∠OBC=300
∴∠ACB=∠OBC ∴CO=OB=AB=OA=3
∴AC=6 ∴BC=
AC=
(2)解:如图l过点Q作QN∥0B交x轴于点N
∴∠QNA=∠BOA=600=∠QAN ∴QN=QA
∴△AQN为等边三角形
∴NQ=NA=AQ=3-t
∴NON=3- (3-t)=t
∴PN=t+t=2t
∴OE∥QN.∴△POE∽△PNQ
∴
∴
∴![]()
∵EF∥x轴
∴∠BFE=∠BCO=∠FBE=300
∴EF=BE∴m=BE=OB-OE![]()
(0<t<3)
(3)解:如图2
![]()
∴∠AEG=600=∠EAG
∴GE1=GA ∴△AE’G为等边三角形
![]()
![]()
∴∠l=∠2 ∠3=∠4
∵∠l+∠2+∠3+∠4=1800∴∠2+∠3=900
即∠QGA=900
∵EF∥OC
![]()
![]()
![]()
![]()
∵∠FCP=∠BCA ∴△FCP∽△BCA.
∵2BQ—PF=
QG ∴
∴t=1∴当t=1 时,2BQ—PF=
QG