题目内容
在平面直角坐标系中,已知直线
与x轴、y轴分别交于A、B两点,点C(0,n)是y轴上一点.把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是( )
A.(0,
) B.(0,
) C.(0,3) D.(0,4)
A.(0,
B
解:过C作CD⊥AB于D,如图,

对于直线
,令x=0,得y=3;令y=0,x=4,
∴A(4,0),B(0,3),即OA=4,OB=3,
∴AB=5,
又∵坐标平面沿直线AC折叠,使点B刚好落在x轴上,
∴AC平分∠OAB,
∴CD=CO=n,则BC=3-n,
∴DA=OA=4,
∴DB=5-4=1,
在Rt△BCD中,
,
∴
,解得
∴点C的坐标为(0,
).
故选B.
对于直线
∴A(4,0),B(0,3),即OA=4,OB=3,
∴AB=5,
又∵坐标平面沿直线AC折叠,使点B刚好落在x轴上,
∴AC平分∠OAB,
∴CD=CO=n,则BC=3-n,
∴DA=OA=4,
∴DB=5-4=1,
在Rt△BCD中,
∴
∴点C的坐标为(0,
故选B.
练习册系列答案
相关题目