题目内容
不等式组的解集在数轴上表示为( )
A. B.
C. D.
如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.
(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)
(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)
(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)
下列性质中,菱形具有而矩形不一定具有的是( )
A. 对角线相等 B. 对角线互相平分
C. 对角线互相垂直 D. 邻边互相垂直
如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为 .
已知一组数据75,80,80,85,90,则它的众数和中位数分别为( )
A.75,80 B.80,85 C.80,90 D.80,80
如图1,直线交轴于点A,交轴于点C(0,4).抛物线经过点A,交轴于点B(0,-2).点P为抛物线上一个动点,经过点P作轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为.
(1)求抛物线的解析式;
(2)当△BDP为等腰直角三角形时,求线段PD的长;
(3)如图2,将△BDP绕点B逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.
先化简,再求值:
,其中的值从不等式组的整数解中选取。
如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在AQ(弧)上且不与A点重合,但Q点可与B点重合.
发现 AP(弧)的长与QB(弧)的长之和为定值l,求l;
思考 点M与AB的最大距离为_______,此时点P,A间的距离为_______;点M与AB的最小距离为________,此时半圆M的弧与AB所围成的封闭图形面积为________.
探究 当半圆M与AB相切时,求AP(弧)的长.
(注:结果保留π,cos 35°=,cos 55°=)
计算:(﹣5a4)•(﹣8ab2)= .