题目内容
如图,已知△ABC,且点A(0,1),点C(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是__________.
某中学九年级组织了一次篮球联赛,赛制为单循环形式(即每两队之间都赛一场),计划安排15场比赛,应邀请多少个球队参加比赛?设共有x个队参赛,则列方程为_____________.
如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.(12分)
如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是( )
A.4米 B.9米 C.16米 D.20米
(本小题满分10分)等腰△ABC中,AB=AC,D为BC上的一动点,DE∥AC ,DF∥AB,分别交 AB于E,AC于F, 则DE+DF是否随D点变化而变化?请说明理由。
在Rt△ABC和Rt△DEF中,AB=DE,∠A=∠D=90°,再补充一个条件__________,便可得Rt△ABC≌Rt△DEF.
平行四边形ABCD中,BC,AD的长分别为(x+2)cm和(3-x)cm,则x的值为( )
A.2 B.1 C. D.
若|a+1|+(b-2)2=0,则 .
(12分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=12,CF=9,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.