题目内容

如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为


  1. A.
    数学公式数学公式
  2. B.
    数学公式数学公式
  3. C.
    数学公式数学公式
  4. D.
    数学公式数学公式
A
分析:由于六边形ABCDEF是正六边形,所以∠AOB=60°,故△OAB是等边三角形,OA=OB=AB=2,设点G为AB与⊙O的切点,连接OG,则OG⊥AB,OG=OA•sin60°,再根据S阴影=S△OAB-S扇形OMN,进而可得出结论.
解答:解:∵六边形ABCDEF是正六边形,
∴∠AOB=60°,
∴△OAB是等边三角形,OA=OB=AB=2,
设点G为AB与⊙O的切点,连接OG,则OG⊥AB,
∴OG=OA•sin60°=2×=
∴S阴影=S△OAB-S扇形OMN=×2×-=-
故选A.
点评:本题考查的是正多边形和圆,根据正六边形的性质求出△OAB是等边三角形是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网