题目内容

计算下列各题:
(1)
(2×5+2)(4×7+2)…(1994×1997+2)
(1×4+2)(3×6+2)…(1993×1996+2)

(2)
20003-2×20002-1998
20003+20002-2001
(1)∵n(n+3)+2=n2+3n+2=(n+1)(n+2),
(2×5+2)(4×7+2)…(1994×1997+2)
(1×4+2)(3×6+2)…(1993×1996+2)

=
(3×4)•(5×6)•(7×8)…(1995×1996)
(2×3)•(4×5)•(6×7)…(1994×1995)

=
1996
2

=998;
(2)设a=2000,
那么原式=
a3-2a2-(a-2)
a3+a2-(a+1)

=
(a-2)(a2-1)
(a+1)(a2-1)

=
a-2
a+1

=
666
667
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网