题目内容
把下列各数及其相反数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来
-2.5 ,0 ,+3.5 ,
如图所示,现有一张边长为4的正方形纸片,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
已知关于x的方程
(1)求证:无论m取任何实数时,方程恒有实数根;
(2)若关于x的二次函数的图象与x轴两交点间的距离为2,且抛物线的开口向上时,求此抛物线的解析式;
(3)在坐标系中画出(2)中的函数图象,分析当直线y=x+b与(2)中的图象只有两个交点时b的取值范围.
如图,抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该它与x轴的另一交点坐标是( )
A. (-2,0) B. (-3,0) C. (0,-3) D. (0,-2)
下列各式是一元二次方程的是( )
A. B. C. D.
绝对值小于5大于2的整数是_____________;
下列说法错误的是( )
A. 是二次三项式 B. -x+1不是单项式
C. 的系数是 D. 的次数是6
如图,□ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为________
对于二次函数和一次函数,把称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E。现有点A(2,0)和抛物线E上的点B(-1,n),请完成下列任务:
【尝试】
(1)当t=2时,抛物线的顶点坐标为__________。
(2)判断点A是否在抛物线E上;
(3)求n的值。
【发现】通过(2)和(3)可知,对于t取任何不为零的实数,抛物线E总过定点,坐标为_____。
【应用】二次函数是二次函数和一次函数的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由;