题目内容

如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>-1时,y>0.其中正确结论的个数是(  )
A、2个B、3个C、4个D、5个
考点:二次函数图象与系数的关系
专题:数形结合
分析:利用抛物线开口方向得a<0,利用对称轴在y轴的右侧得b>0,则可对①进行判断;根据二次函数图象上点的坐标特征得c=1,a-b+c=0,则b=a+c=a+1,所以0<b<1,于是可对②④进行判断;由于a+b+c=a+a+1+1=2a+2,利用a<0可得a+b+c<2,再根据抛物线的对称性得到抛物线与x轴的另一个交点在(1,0)和(2,0)之间,则x=1时,函数值为正数,即a+b+c>0,由此可对③进行判断;观察函数图象得到x>-1时,抛物线有部分在x轴上方,有部分在x轴下方,则可对⑤进行判断.
解答:解:∵由抛物线开口向下,
∴a<0,
∵对称轴在y轴的右侧,
∴b>0,
∴ab<0,所以①正确;
∵点(0,1)和(-1,0)都在抛物线y=ax2+bx+c上,
∴c=1,a-b+c=0,
∴b=a+c=a+1,
而a<0,
∴0<b<1,所以②错误,④正确;
∵a+b+c=a+a+1+1=2a+2,
而a<0,
∴2a+2<2,即a+b+c<2,
∵抛物线与x轴的一个交点坐标为(-1,0),而抛物线的对称轴在y轴右侧,在直线x=1的左侧,
∴抛物线与x轴的另一个交点在(1,0)和(2,0)之间,
∴x=1时,y>0,即a+b+c>0,
∴0<a+b+c<2,所以③正确;
∵x>-1时,抛物线有部分在x轴上方,有部分在x轴下方,
∴y>0或y=0或y<0,所以⑤错误.
故选B.
点评:本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网