题目内容
【题目】如图,BE是圆O的直径,A在EB的延长线上,AP为圆O的切线,P为切点,弦PD垂直于BE于点C.
(1)求证:∠AOD=∠APC;
(2)若OC:CB=1:2,AB=6,求圆O的半径及tan∠APB.
![]()
【答案】(1)见解析;(2)![]()
【解析】试题分析:(1)连接OP,可结合已知的等角和等腰三角形、直角三角形的性质进行证明;
(2)根据OC、BC的比例关系,可用未知数表示出OC、BC的表达式,进而可得OP、OB的表达式;在Rt△AOP中,PC⊥OA,根据射影定理得:PC2=PCAC,PC2的表达式可在Rt△OPC中由勾股定理求得,由此求得未知数的知,从而确定PC、CE的长,也就能求出⊙O的半径和∠APB的正切值.
试题解析:(1)连接OP,
∵OP=OD,∴∠OPD=∠D,
∵PD⊥BE,
∴∠OCD=90°,
在Rt△OCD中,∠D+∠AOD=90°,
又∵AP是⊙O的切线,
∴AP⊥OP,
则∠OPD+∠APC=90°,
∴∠AOD=∠APC;
(2)连接PE,
∴∠BPE=90°(直径所对的圆周角是直角),
∵AP是⊙O的切线,
∴∠APB=∠OPE=∠PEA,
∵OC:CB=1:2,
∴设OC=x,则BC=2x,OP=OB=3x,
在Rt△OPC中,OP=3x,OC=x,由勾股定理得:
PC2=OP2﹣OC2=8x2,
在Rt△OPC中,PC⊥OA,由射影定理得:
PC2=OCAC,即8x2=x(2x+6),6x2=6x,
解得x=0(舍去),x=1,
∴OP=OB=3,PC=2
,CE=OC+OE=3+1=4,
∴tan∠APB=tan∠PEC=
,
∴⊙O的半径为3,∠APB的正切值是
.
![]()
【题目】为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数(人数) |
第1组 | 25≤x<30 | 4 |
第2组 | 30≤x<35 | 6 |
第3组 | 35≤x<40 | 14 |
第4组 | 40≤x<45 | a |
第5组 | 45≤x<50 | 10 |
请结合图表完成下列各题:
(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?
(4)第5组10名同学中,有4名男生,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,试用列表法或画树状图的方法求小宇和小强两名男同学能分在一组的概率.
![]()