题目内容

满足m2+n2+2m-6n+10=0的是


  1. A.
    m=1,n=3
  2. B.
    m=1,n=-3
  3. C.
    m=-1,n=-3
  4. D.
    m=-1,n=3
D
分析:此题应先对m2+n2+2m-6n+10=0变形得(m+1)2+(n-3)2=0,再根据非负数的性质列出等式求解即可得到m、n的值.
解答:对m2+n2+2m-6n+10=0变形得(m+1)2+(n-3)2=0,
则m+1=0,n-3=0,
解得:m=-1,n=3.
故选D.
点评:本题考查了因式分解的应用,重点是通过变形运用非负数的性质进行求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网