题目内容
观察下列等式:
=1+1-
,
=1+
-
,
=1+
-
,…
(1)猜想并写出第n个等式;
(2)证明你写出的等式的正确性.
1+
|
| 1 |
| 2 |
1+
|
| 1 |
| 2 |
| 1 |
| 3 |
1+
|
| 1 |
| 3 |
| 1 |
| 4 |
(1)猜想并写出第n个等式;
(2)证明你写出的等式的正确性.
分析:(1)观察各式,即可得到规律:
=1+
-
;
(2)利用分式的加减运算法则求解,可得1+
+
=[1+
-
]2,继而可证得结论.
1+
|
| 1 |
| n |
| 1 |
| n+1 |
(2)利用分式的加减运算法则求解,可得1+
| 1 |
| n2 |
| 1 |
| (n+1)2 |
| 1 |
| n |
| 1 |
| (n+1) |
解答:解:(1)猜想:
=1+
-
;
(2)证明:∵1+
+
=1+[
-
]2+2×
=1+[
-
]2+2[
-
]=[1+
-
]2
∴
=1+
-
.
1+
|
| 1 |
| n |
| 1 |
| n+1 |
(2)证明:∵1+
| 1 |
| n2 |
| 1 |
| (n+1)2 |
| 1 |
| n |
| 1 |
| (n+1) |
| 1 |
| n(n+1) |
=1+[
| 1 |
| n |
| 1 |
| (n+1) |
| 1 |
| n |
| 1 |
| (n+1) |
| 1 |
| n |
| 1 |
| (n+1) |
∴
1+
|
| 1 |
| n |
| 1 |
| n+1 |
点评:此题考查了二次根式的性质与化简.此题难度适中,属于规律性题目,注意能根据题意得到规律:
=1+
-
是解此题的关键.
1+
|
| 1 |
| n |
| 1 |
| n+1 |
练习册系列答案
相关题目