题目内容

13、若(x2+y22-4(x2+y2)-5=0,则x2+y2=
5
分析:把x2+y2当作一个整体,可以设x2+y2=t,则原方程即可变形为一个关于t的一元二次方程,解方程即可求得t,即x2+y2的值,然后利用平方的非负性,即可确定.
解答:解:设x2+y2=t,
则原式变形为:t2-4t-5=0,
∴(t-2)2-9=0,
∴(t-2)2=9,
∴t=5或-1.
∵x2+y2≥0,
∴x2+y2=5.
点评:本题的关键是把x2+y2看成一个整体来计算,即换元法思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网