题目内容
分解因式: =_________.
二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是( ).
A. 点C的坐标是(0,1) B. 线段AB的长为2
C. △ABC是等腰直角三角形 D. 当x>0时,y随x增大而增大
解方程:
如图, 为的直径, 为弦的中点,连接并延长交于点,过点作∥,交的延长线于点,连接, .
(1)求证: 是⊙的切线;
(2)若时,
①求图中阴影部分的面积;
②以为原点, 所在的直线为轴,直径的垂直平分线为轴,建立如图所示的平面直角坐标系,试在线段上求一点,使得直线把阴影部分的面积分成的两部分.
先化简,再求值: ,其中.
在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )
A. 最高分90 B. 众数是5 C. 中位数是90 D. 平均分为87.5
在平面直角坐标系xOy中,给出如下定义:
对于⊙C及⊙C外一点P,M,N是⊙C上两点,当∠MPN最大时,称∠MPN为点P关于⊙C的“视角”.
(1)如图,⊙O的半径为1,
①已知点A(0,2),画出点A关于⊙O的“视角”;
若点P在直线x = 2上,则点P关于⊙O的最大“视角”的度数 ;
②在第一象限内有一点B(m,m),点B关于⊙O的“视角”为60°,求点B的坐标;
③若点P在直线上,且点P关于⊙O的“视角”大于60°,求点P的横坐标的取值范围.
(2)⊙C的圆心在x轴上,半径为1,点E的坐标为(0,1),点F的坐标为(0,-1),若线段EF上所有的点关于⊙C的“视角”都小于120°,直接写出点C的横坐标的取值范围.
如图,四边形 ABCD的顶点均在⊙O上,∠A=70°,则∠C=___________°.
如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥ x轴,交y轴于点D,交该二次函数图象于点B,连结BC.
(1)求该二次函数的解析式及点M的坐标;
(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ ABC的内部(不包括△ ABC的边界),求m的取值范围;
(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△ BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写过程).