题目内容
| 2 | 3 |
(1)求⊙O的半径OD;
(2)求证:AE是⊙O的切线;
(3)求图中两部分阴影面积的和.
分析:(1)由AB为圆O的切线,利用切线的性质得到OD垂直于AB,在直角三角形BDO中,利用锐角三角函数定义,根据tan∠BOD及BD的值,求出OD的值即可;
(2)连接OE,由AE=OD=3,且OD与AE平行,利用一组对边平行且相等的四边形为平行四边形,根据平行四边形的对边平行得到OE与AD平行,再由DA与AE垂直得到OE与AC垂直,即可得证;
(3)阴影部分的面积由三角形BOD的面积+三角形ECO的面积-扇形DOF的面积-扇形EOG的面积,求出即可.
(2)连接OE,由AE=OD=3,且OD与AE平行,利用一组对边平行且相等的四边形为平行四边形,根据平行四边形的对边平行得到OE与AD平行,再由DA与AE垂直得到OE与AC垂直,即可得证;
(3)阴影部分的面积由三角形BOD的面积+三角形ECO的面积-扇形DOF的面积-扇形EOG的面积,求出即可.
解答:
解:(1)∵AB与圆O相切,
∴OD⊥AB,
在Rt△BDO中,BD=2,tan∠BOD=
=
,
∴OD=3;
(2)连接OE,
∵AE=OD=3,AE∥OD,
∴四边形AEOD为平行四边形,
∴AD∥EO,
∵DA⊥AE,
∴OE⊥AC,
又∵OE为圆的半径,
∴AC为圆O的切线;
(3)∵OD∥AC,
∴
=
,即
=
,
∴AC=7.5,
∴EC=AC-AE=7.5-3=4.5,
∴S阴影=S△BDO+S△OEC-S扇形FOD-S扇形EOG
=
×2×3+
×3×4.5-
=3+
-
=
.
∴OD⊥AB,
在Rt△BDO中,BD=2,tan∠BOD=
| BD |
| OD |
| 2 |
| 3 |
∴OD=3;
(2)连接OE,
∵AE=OD=3,AE∥OD,
∴四边形AEOD为平行四边形,
∴AD∥EO,
∵DA⊥AE,
∴OE⊥AC,
又∵OE为圆的半径,
∴AC为圆O的切线;
(3)∵OD∥AC,
∴
| BD |
| AB |
| OD |
| AC |
| 2 |
| 2+3 |
| 3 |
| AC |
∴AC=7.5,
∴EC=AC-AE=7.5-3=4.5,
∴S阴影=S△BDO+S△OEC-S扇形FOD-S扇形EOG
=
| 1 |
| 2 |
| 1 |
| 2 |
| 90π×32 |
| 360 |
=3+
| 27 |
| 4 |
| 9π |
| 4 |
=
| 39-9π |
| 4 |
点评:此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.
练习册系列答案
相关题目