题目内容
有一个多边形的内角和是它外角和的5倍,则这个多边形是 边形.
已知点D与点A(0,6),B(0,﹣4),C(x,y)是平行四边形的四个顶点,其中x,y满足x﹣y+3=0,则CD长的最小值为( )
A. B. 4 C. 2 D. 2
如图,△ABC是定圆O的内接三角形,AD为△ABC的高线,AE平分∠BAC交⊙O于E,交BC于G,连OE交BC于F,连OA,在下列结论中, ①CE=2EF,②△ABG∽△AEC,③∠BAO=∠DAC,④为常量.其中正确的有______.
如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=50°,∠BDC=75°.求∠BED的度数.
若x2+(m﹣1)x+16是一个完全平方式,则m=____.
在下列条件中,①∠A+∠B=∠C; ②∠A:∠B:∠C=1:2:3; ③∠A=∠B=∠C; ④∠A=∠B=2∠C; ⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有( )
A. 2个 B. 3个 C. 4个 D. 5个
如图,在平面直角坐标系中,直线y=与抛物线y=﹣x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为﹣8.
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为m,点P的横坐标为x,当△PDE周长m最大时,求点P的坐标,并求出m的最大值;
②连接PA,以PA为边作图示一侧的正方形APFG(逆时针方向作正方形APFG).随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.
某市为处理污水需要铺设一条长为4000米的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设10米,结果提前20天完成任务. 设原计划每天铺设管道x米,则可得方程( )
A. B. C. D.
解方程:(1) (2)