题目内容
如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数在第一象限的图象经过点B,若OA2-AB2=12,则k的值为_______.
某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图5的折线统计图,则符合这一结果的实验最有可能的是( )
A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
D.掷一个质地均匀的正六面体骰子,向上的面点数是4
(本题满分7分)如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠DEC=90°
(1)△CDE是什么三角形?请说明理由
(2)若AD=6,AB=14,请求出BC的长.
下列运算正确的是( )
A. B. C. D.
阅读材料:
小强遇到这样一个问题:已知正方形ABCD的边长为a,求作另一个正方形EFGH,使它的四个顶点分别在已知正方形的四条边上,并且边长等于b.
小强的思考是:如图,假设正方形EFGH已作出,其边长为b,点E、F、G、H分别在AD、AB、BC、CD上,则正方形EFGH的中心就是正方形ABCD的中心O(对角线的交点).
∵正方形EFGH的边长为b,∴对角线EG=HF=b,
∴OE=OF=OG=OH=b,进而点E、F、G、H可作出.
解决问题:
(1)下列网格每个小正方形的边长都为1,请你在网格中作出一个正方形ABCD,使它的边长a=,要求A、B、C、D四个顶点都在小正方形的格点上.
(2)参考小强的思路,探究解决下列问题:作另一个正方形EFGH,使它的四个顶点分别在(1)中所做正方形ABCD的边上,并且边长b取得最小值.请你画出图形,并简要说明b取得最小值的理由,写出b的最小值.
如图,已知一次函数y1=kx-4与反比例函数的图象都经过A(a,2),B(-1,b)两点,当时,x的取值范围是________.
将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变.当∠B=90°时,如图1,测得AC=2.当∠B=60°时,如图2,AC=( ).
图1 图2
A. B.2 C. D.
如图,在Rt△ABC中,∠ACB=90°,AC=3,AB=6,点D是AB的中点,则CD=_________.
如果有两点到一条直线的距离相等,那么称这条直线为 “两点的等距线”.
(1)如图1,直线CD经过线段AB的中点P,试说明直线CD是点A、B的一条等距线.
(2)如图2,A、B、C是正方形网格中的三个格点,请在网格中作出所有的直线m,使直线m过点C且直线m是“A、B的等距线”.
(3)如图3,抛物线过点(,),(3,),顶点为C.抛物线上是否存在点P ,使,若存在,求出点P的坐标;若不存在,请说明理由。