题目内容
如图,已知双曲线
,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.
(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)判断AB与CD的位置关系,并说明理由.
(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)判断AB与CD的位置关系,并说明理由.
解:(1)∵双曲线
经过点D(6,1),
∴
,解得k=6;
(2)设点C到BD的距离为h,
∵点D的坐标为(6,1),DB⊥y轴,
∴BD=6,
∴S△BCD=
×6h=12,解得h=4,
∵点C是双曲线第三象限上的动点,点D的纵坐标为1,
∴点C的纵坐标为1-4= -3,
∴
,解得x= -2,
∴点C的坐标为(-2,-3),
设直线CD的解析式为y=kx+b,
则
,解得
,
所以,直线CD的解析式为
;
(3)AB∥CD.理由如下:
∵CA⊥x轴,DB⊥y轴,点C的坐标为(-2,-3),点D的坐标为(6,1),
∴点A、B的坐标分别为A(-2,0),B(0,1),
设直线AB的解析式为y=mx+n,则
,
解得
,
所以,直线AB的解析式为
,
∵AB、CD的解析式k都等于
相等,
∴AB与CD的位置关系是AB∥CD.
∴
(2)设点C到BD的距离为h,
∵点D的坐标为(6,1),DB⊥y轴,
∴BD=6,
∴S△BCD=
∵点C是双曲线第三象限上的动点,点D的纵坐标为1,
∴点C的纵坐标为1-4= -3,
∴
∴点C的坐标为(-2,-3),
设直线CD的解析式为y=kx+b,
则
所以,直线CD的解析式为
(3)AB∥CD.理由如下:
∵CA⊥x轴,DB⊥y轴,点C的坐标为(-2,-3),点D的坐标为(6,1),
∴点A、B的坐标分别为A(-2,0),B(0,1),
设直线AB的解析式为y=mx+n,则
解得
所以,直线AB的解析式为
∵AB、CD的解析式k都等于
∴AB与CD的位置关系是AB∥CD.
练习册系列答案
相关题目