题目内容
下列各方程中,是一元一次方程的是
A. B. C. D.
如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.
(1)求抛物线的解析式;
(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.
①当△OPC为等腰三角形时,求点P的坐标;
②求△BOD 面积的最大值,并写出此时点D的坐标.
如图,直角三角板的直角顶点在正方形的顶点上,若,则下列结论错误的是( )
A. B. C. ∠4=450 D. ∠5=300
x的3倍与5的和大于8,用不等式表示为________________ .
已知方程组的解是
如图,已知抛物线y=+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0),
(1)求m的值及抛物线的顶点坐标.
(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.
一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球_____个.
.如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线相交于点A(m,3),B(-6,n),与x轴交于点C.
(1)求直线y=kx+b(k≠0)的解析式;
(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标(直接写出结果).
【数学概念】
若四边形ABCD的四条边满足ABCDADBC,则称四边形ABCD是和谐四边形.
【特例辨别】
(1)下列四边形:①平行四边形,②矩形,③菱形,④正方形.其中一定是和谐四边形的是________.
【概念判定】
(2)如图①,过⊙O外一点P引圆的两条切线PS、PT,切点分别为A、C,过点P 作一条射线PM,分别交⊙O于点B、D,连接AB、BC、CD、DA.求证:四边形ABCD是和谐四边形.
【知识应用】
(3)如图②,CD是⊙O的直径,和谐四边形ABCD内接于⊙O,且BCAD.请直接写出AB与CD的关系.