题目内容
因式分【解析】= .
如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°.若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1∶0.75,坡长BC=10米,则此时AB的长约为(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)( )
A. 5.1米 B. 6.3米 C. 7.1米 D. 9.2米
(本题10分)(1)计算:;(2)化简:.
在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程,操作步骤是:
第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);
第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;
第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图1);
第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n即为该方程的另一个实数根.
(1)在图2中,按照“第四步”的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);
(2)结合图1,请证明“第三步”操作得到的m就是方程的一个实数根;
(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程 (a≠0,≥0)的实数根,请你直接写出一对固定点的坐标;
(4)实际上,(3)中的固定点有无数对,一般地,当m1,n1,m2,n2与a,b,c之间满足怎样的关系时,点P(m1,n1),Q(m2,n2)就是符合要求的一对固定点?
如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是 .
已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为,当电压为定值时,I关于R的函数图象是( )
A. B. C. D.
已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE ,设∠BAD=α,∠CDE=β.
(1)如图,若点D在线段BC上,点E在线段AC上.
①如果∠ABC=60°,∠ADE=70°, 那么α=_______,β=_______.
②求α、β之间的关系式.
(2)是否存在不同于以上②中的α、β之间的关系式?若存在,求出这个关系式,若不存在,请说明理由.
如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )
A.0.7米 B.1.5米 C.2.2米 D.2.4米
投一个普通骰子,有下述说法:①朝上一面的点数是偶数;②朝上一面的点数是整数;③朝上一面的点数是3的倍数;④朝上一面的点数是5的倍数。将上述事件按可能性的大小从大到小排列为( )
A. ①②③④ B. ①③②④ C. ④①③② D. ②①③④