题目内容
已知:如图,在半径为4的⊙O中,圆心角∠AOB=90°,以半径OA、OB的中点C、F为顶点作矩形CDEF,顶点D、E在⊙O的劣弧上,OM⊥DE于点M.试求图中阴影部分的面积.(结果保留π)
下列各式计算正确的是( )
A. °=118″ B. 38゜15′=38.15゜ C. 24.8゜×2=49.6゜ D. 90゜﹣85゜45′=4゜65′
如图,点C,D是半圆O上的三等分点,直径AB=4,连接AD,AC,作DE⊥AB,垂足为E,DE交AC于点F.
(1)求证:AF=DF.
(2)求阴影部分的面积(结果保留π和根号)
如图,AB是⊙O的直径,点C在⊙O上,D是中点,若∠BAC=70°,求∠C.
下面是小雯的解法,请帮他补充完整.
【解析】在⊙O中,
∵D是的中点
∴=,
∴∠l=∠2( )(填推理的依据)
∵∠BAC=70°
∴∠2=35°
∵AB是⊙O的直径,
∴∠ADB=90°( )(填推理的依据)
∴∠B=90°﹣∠2=55°
∵A、B、C、D四个点都在⊙O上,
∴∠C+∠B=180°( )(填推理的依据)
∴∠C=l80°﹣∠B= (填计算结果)
如图,一段圆弧与长度为1的正方形网格的交点是A、B、C.
(1)请完成以下操作:
①以点O为原点,垂直和水平方向为轴,网格边长为单位长,建立平面直角坐标系;
②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD;
(2)请在(1)的基础上,完成下列填空:⊙D的半径为__________;点(6,–2)在⊙D__________;(填“上”、“内”、“外”)∠ADC的度数为__________.
如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.
(1)求证:AB=AC;
(2)求证:DE为⊙O的切线.
《九章算术》是我国古代内容极为丰富的数学名著.书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”( )
A. 3步 B. 5步 C. 6步 D. 8步
在数轴上,点M表示的数为-2,将它先向右平移4.5个单位,再向左平移5个单位到达N点,则点N表示的数是________.